Channel Access in D2D Multiuser Networks: A Game Theoretical Approach

Abiodun Gbenga-Ilori1 and Aydin Sezgin2
1Department of Electrical and Electronics Engineering, University of Lagos
2Institute of Digital Communication Systems, Ruhr-Universität Bochum
Email: gbengailori@unilag.edu.ng, aydin.sezgin@rub.de

Abstract—In this paper we consider allocation of the uplink resource of a cellular user to a group of Device-to-Device (D2D) links communicating in pairs to enhance the overall system throughput and achieve higher spectral efficiency in multiuser networks. We present a coalition game model for coalition formation decisions which ensures that interference does not exceed an acceptable limit and guarantee an optimal rate for each user in the cellular network. We propose an algorithm which detect sufficient condition needed for stability in the coalitions formed. We present simulation results to test the validity of our algorithm.

Index Terms—Coalition game, interference, D2D, uplink

I. INTRODUCTION

The ever growing demand for higher data rates and capacity has put a lot of demand on the present communication networks leading to the proposal of employing Device-to-Device (D2D) communication for 4G and 5G networks. Traditionally, all transmissions must go through the base station before communication is established, even if the two communicating user equipment (UEs) are within close proximity. This leads to delay and inefficient use of spectrum resource. With D2D communications, UEs in close proximity can communicate directly without going through the base station by forming a mobile cloud. A mobile cloud can be defined as an opportunistic cooperative cluster of wireless devices in close proximity which are capable of communicating with other devices while preserving their connection to an underlay cellular access network simultaneously, [1]. This means that traffic to the base station can be reduced with D2D communication. Interference management is, however, key to experiencing the potential benefits that D2D communication in cellular networks has to offer.

We propose a coalition game model for the optimisation of spectrum resource in terms of achievable data rates, while protecting licensed cellular users from interference, in multiuser networks that allow D2D communication. A key assumption in this paper is that D2D links are rational and only seeks to maximize their payoff. We therefore consider game theory as a tool to analyze D2D spectrum access.

Game theoretical approaches has been used in a few other research works to address the issue of interference control and resource allocation for D2D communication in cellular networks. In [2], a pricing framework for interference management in D2D underlaying cellular networks was formulated with Stackelberg game. The game was used to model the interactions between base stations and D2D users in a way that allows each base station to set prices that maximizes its revenue subject to an interference temperature constraint. In [3], a hierarchical game framework was used to solve resource allocation problem under the constraints of power cap and maximum tolerable interference level. The hierarchical game used Stackelberg model for the power control and interference protection while coalition game was used for the resource allocation.

Matching markets was used in [4] to analyze the sharing of cellular networks by D2D devices and cellular UEs. The paper presents sufficient conditions under which a Bayesian equilibrium of a matching market exists. The work assumed that only one D2D link can share the cellular sub-band and so a one-to-one matching market was used. The major improvement achieved in our paper is that there is no restriction as to the number of D2D links that can share a cellular sub-band making our model more realistic and necessitating the use of a many-to-one matching market. A rigorous interference management scheme is however needed in our model to protect licensed cellular users from interference.

The key contributions of this paper can be summarized as follows:

- formulation of a coalition game to model the data rate gain possible with deploying D2D communication in cellular networks,
- proposal of the a cellular sub-band allocation game (CSAG) scheme that is based on matching markets with private beliefs which ensures that spectrum sharing between D2D links and cellular users does not cause intolerably high interference to cellular users,
- A comprehensive performance evaluation of the proposed game model.

II. PRELIMINARIES

We assume that the reader is familiar with common notions of game theory and we therefore do not define these concepts here but suggest the reference, [5].

The payoff of a D2D link sharing a cellular sub-band in the cellular sub-band allocation game is determined as a function of the rate obtained for the link between the D2D transmitter and D2D receiver. The rate that can be achieved in a licensed
sub-band is given as:

\[R_l = \log_2 (1 + \text{SINR}_{R_l}), \tag{1} \]

where the Signal to Interference plus Noise Ratio (SINR) used in (1) varies according to:

\[\text{SINR}_{R_l} = \begin{cases}
\frac{P_{d_i} G_i}{P_{d_j} G_j + P_c G_c + \sigma^2} & \text{if } d_i \leq d_j, \\
\frac{P_{d_j} G_j}{P_{d_i} G_i + \sigma^2} & \text{if } d_i > d_j.
\end{cases} \tag{2} \]

where \(P_{d_i} \) is the transmit power of the D2D link \(d_i \), \(P_{d_j} \) is the transmit power of other D2D links \(d_j \) if there is more than one D2D link in the cellular sub-band and \(P_c \) is the transmit power of the cellular device, \(G \) is the link gain in the D2D to D2D link or the cellular device to base station link while \(\sigma^2 \) is the average noise power. In this work, we refer to the number of D2D links allowed to share the licensed cellular sub-band as the capacity of the cellular sub-band \(q_c \) and we assume that \(q_c = n \) where \(n \) is the number of UEs within the sub-band. In the first case of equation (2), the licensed sub-band \(L \) is occupied by the cellular user \(c \), the D2D \(d_i \) and a set of other D2D links. In the second case, the sub-band is occupied by \(c \) and \(d_i \) while in the third case the sub-band is occupied by only \(d_i \).

The average payoff of the D2D link \(d_i \) for any coalition strategy \(S \) chosen in the underlay mode, given its private beliefs \(B_{d_i} \), is given as:

\[U_{d_i}(S, J) = \sum_{t_{-d_i} \in J_{-d_i}} b_{d_i}(J_{-d_i})[\beta_{d_i}(U_{d_i}(S, J)) \tag{3} \]

\(\beta \) is the probability that a sub-band is allocated to a D2D link.

\(S \) is the coalition formed while \(J \) is the type space denoted by \(J = J_1 \times \cdots \times J_N \) where the type of D2D link \(d_i \) is \(J_{d_i} = \{T_1, T_{N1}\} \) and \(T_j \) represents a potential interfering D2D link while \(T_{NI} \) represents a potential non-interfering D2D link. \(\gamma_{d_i} \) is the cost paid by a D2D link for using a licensed sub-band and this cost is \(\gamma_{d_i} \leq y_g + y_t \). Here \(y_g \) is the loss of spectrum gain in the case where coalition was impossible, and \(y_t \) is the penalty paid if interference results from \(d_i \)’s use of the sub-band. \(b_{d_i}(J_{-d_i}) \) is the vector showing the probability distribution of the D2D link \(d_i \) over the types of others in the network and

\[b_{d_i}(J_{-d_i}) = \prod_{t_{-d_i} \in J_{-d_i}} P_c(t_{d_j} = t_{d_j}^{d_i}). \tag{4} \]

The goal is to maximize the overall rate of the network by seeking a Bayesian coalition equilibrium for the game described above such that

\[U_{d_i}(S_{d_i}^*, J_{d_i}), (S_{d_i}^*, J_{-d_i}), J) \geq U_{d_i}(S_{d_i}, J_{d_i}), (S_{d_i}, J_{-d_i}), J). \tag{5} \]

III. CELLULAR SUB-BAND ALLOCATION GAME

The coalition game is a many-to-one matching problem referred to as a cellular sub-band allocation problem, [6].

Each D2D link has strict preferences over all cellular sub-bands, and each cellular device with licensed sub-band have strict priorities over all D2D links. Note that priorities do not represent cellular sub-band’s preferences as priorities are determined by the base station according to its channel state information (CSI).

The two-sided, many-to-one matching market used in this work is described by the Gale-Shapley’s Deferred Acceptance (DA) mechanism, [7]. This is an allocation mechanism that has been shown to be optimal and stable. A cellular sub-band allocation problem consists of a well ordered pair \((P, Q)\) of preferences and priorities. For each allocation matching problem \(\Pi(P, Q) \) the algorithm operates as described in Algorithm 1. The algorithm has been shown to yield a unique stable matching in \(O(n^2) \) time, [7].
Algorithm 1 Cellular Sub-Band Allocation Algorithm

INPUT: D, C, P, Q
OUTPUT: An Optimal matching Π^* between D2D links

1: Each D2D link $d \in D$ decides its preference by

$$P_d = \arg\max_{S, J} U_{d_i}(S, J)$$

2: D2D to cellular sub-band matching

Step 1: Each D2D link $d \in D$ sends their request to their most desired cellular user with licensed sub-band $c \in C$. For each cellular user with a sub-band, D_1^c for all $D_1^c \in D$, is the set of D2D links that proposes to c at step 1. Each cellular with a sub-band c tentatively accepts the best D2D links $D_{\text{best}}^c \cup Q$ up to its capacity $q_c = n$, for all $D_{\text{best}}^c \in D^c_1$. It rejects the other D2D links $D_{\text{best}}^c \setminus D_1^c$. The target SINR vector γ_c is $G_T^c = [G_{c,c}, 0, \ldots, 0]$, while the effective link gain vector for the cellular transmitter and cellular receivers is $G_{d}^T = [G_{c,c}, 0, \ldots, 0]$, where $D = [P_{c_1}, P_{d_1}, \ldots, P_{d_2}]^T$. The identity matrix is I, while $F = [F_{q,l}]$ is the normalized channel gain matrix with the elements given as follows:

$$F_{q,l} = \begin{cases} \frac{G_{c,q}}{\sigma^2_{c,q}} & \text{if } q \neq l \\ 0 & \text{if } q = l. \end{cases}$$

The solution of the above quasi-convex optimization problem is $P = [P_{c_1}, P_{d_1}, \ldots, P_{d_2}]^T$ that maximizes our SINR for cellular receiver by choosing the best n D2D transmit power amongst P_1 to P_q. The n D2D with these transmit powers forms D_{best} vector in our algorithm 1. In our paper, each D2D link can dynamically update its beliefs about other D2D links. The belief updating mechanism used is based on Bayes’ theorem, [8]. We consider a situation where D2D link d_i observes another D2D link d_j to determine if it is an interfering or non-interfering link. We assumed in the paper that two things are observed by the d_i. The first is the received power from d_j, represented as P_{d_j}, which must be less than a maximum power threshold. The second thing observed is the distance between d_i and d_j represented as d_{ij}, which must be greater than a minimum distance threshold. If $P_{d_i} > \text{PowerThreshold}$ or $d_{ij} < \text{DistThreshold}$, then d_i assumes that d_j is an interfering link. \text{PowerThreshold} is the maximum allowable power received from any D2D link that would like to share a sub-band while \text{DistThreshold} is the minimum distance between UEs that wants to share the sub-band. These thresholds are determined based on the number of observations. The D2D links make use of the belief factor to determine its preference profile and form coalition that will maximize its payoff.

IV. Numerical Analysis

In order to evaluate the performance of our algorithm, we simulated a cellular network with multiple D2D links and cellular users that are randomly located in a square-shaped coverage area. We have considered two types of coverage areas; 50 m square area with 2 cellular devices and 7 D2D users and 100 m square area with 8 cellular devices and 20

Proposition 1. The cellular sub-band allocation algorithm produces a stable matching and the final matching is D2D link-optimal.

Proof: Supposing cellular sub-band c from the set $C = \{c_1, \ldots, c_m\}$ receives requests from D2D links $D = \{d_1, d_2, \ldots, d_l\}$. Let us assume that c accepts $\{d_1, \ldots, d_n\}$, according to its capacity $q_c = n$, and rejects the other D2D links $D \setminus \{d_1, \ldots, d_n\}$. We show that D2D links $D \setminus \{d_1, \ldots, d_n\}$ are impossible matches for c under the cellular sub-band allocation algorithm since $\{d_1, \ldots, d_n\}$ prefers c to all other sub-bands, except for those that rejected them in the previous matching steps. Suppose that in contrast, we assume that $\{d_1, \ldots, d_{n+1}\} \setminus d_n$ are matched to c, and every other D2D links are matched to sub-bands that are possible for them. This implies that d_n must have been matched to a less desired sub-band, making the matching unstable since d_n and c will be blocking d_{n+1}. Hence c is an impossible match for d_{n+1} under the cellular sub-band allocation algorithm. This is because the algorithm ends only when no D2D link is rejected from its tentative sub-band allocation and in this case the algorithm will end only when c has rejected d_{n+1} and accepted d_n and every other D2D links is matched to sub-bands that are possible for them. This shows that the resulting allocation is stable and D2D link-optimal.

\square

D_{best}, described in algorithm 1, is the best D2D links for the cellular user c given its priority profile Q. To determine D_{best}, a power control optimization scheme is used. The aim is to use CSI available at the BS to determine the optimal transmit power for D2D devices that maximizes the SINR of the cellular link while satisfying the individual target SINR constraints for both the cellular and D2D links. The optimization problem can be written in matrix form as:

$$\begin{align*}
\text{maximize} & \quad G_T^c P \\
\text{subject to} & \quad (I - F)P \geq \gamma_c, \\
& \quad 0 \leq P \leq P_{\text{max}},
\end{align*}$$

where $P = [P_{c_1}, P_{d_1}, \ldots, P_{d_2}]^T$, denotes the transmit power vector for the cellular and D2D devices, the effective link gain vector between cellular transmitter and cellular receivers is $G_T^c = [G_{c,c}, 0, \ldots, 0]$, while the effective link gain vector between cellular transmitter and D2D receivers is $G_{d}^T = [0, G_{c,c,1}, \ldots, G_{c,c,q}]$, and $P_{\text{max}} = [P_{\text{max,1}}, P_{\text{max,2}}, \ldots, P_{\text{max,q}}]^T$. The identity matrix is I, while $F = [F_{q,l}]$ is the normalized channel gain matrix with the elements given as follows:

$$F_{q,l} = \begin{cases} \frac{G_{c,q}}{\sigma^2_{c,q}} & \text{if } q \neq l \\ 0 & \text{if } q = l. \end{cases}$$
TABLE II
SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell radius</td>
<td>50 m, 100 m</td>
</tr>
<tr>
<td>Noise Power (σ^2)</td>
<td>-174 dBm</td>
</tr>
<tr>
<td>Carrier Frequency</td>
<td>2 GHz</td>
</tr>
<tr>
<td>System Bandwidth</td>
<td>5 MHz</td>
</tr>
<tr>
<td>D2D link length ($</td>
<td>d_i</td>
</tr>
<tr>
<td>Maximum UE Transmitter Power ($P_{c_{\text{max}}}, P_{d_{\text{max}}}$)</td>
<td>24 dBm</td>
</tr>
<tr>
<td>CU SINR Threshold (γ_c)</td>
<td>4.8 dB</td>
</tr>
<tr>
<td>D2D SINR Threshold (γ_d)</td>
<td>2 dB</td>
</tr>
<tr>
<td>Pathloss exponent</td>
<td>4</td>
</tr>
<tr>
<td>Number of Simulation runs</td>
<td>500</td>
</tr>
</tbody>
</table>

D2D users. Every cell is served with one base station. The length of the D2D links vary from 10 m to 20 m in our simulations.

We compare D2D spectrum sharing without our coalition game but with random pairing in figures 3 (a) and (b) with spectrum sharing using our proposed coalition game in figures 4 (a) and (b). The cellular power used for our simulations is 24 dB and convex optimization is used to determine the optimal D2D transmitter power for various scenarios. Figure 4 shows an improved cell sum rate compared to figure 3. We observe that interference does not put any constraint on the capacity of the network even with the increased number of D2D links because of the matching used in our algorithm. Other parameters used in our simulation are given in table II.

Fig. 2. Simulation setup for 100 m by 100 m cell.

Results from our numerical analysis showed that, with our model, it is possible to achieve about twice the sum rate when D2D underlays cellular networks compared to when the network is used by cellular devices alone.

V. CONCLUSION

In this paper, we consider spectrum sharing between D2D devices and licensed cellular devices in a multiuser network. We have formulated a coalition game model which ensures that coalitions are formed in a way that guarantees interference-free communication and optimal network capacity. We derive sufficient conditions under which our games achieve stability in the spectrum sharing coalitions formed. Results from our numerical analysis showed that, with our model, it is possible to almost twice the sum rate when D2D underlays cellular networks compared to when the network is used by cellular devices alone.

ACKNOWLEDGEMENT

The first author will like to acknowledge the support of the Alexander von Humboldt Foundation for financing her post-doctoral research stay at the Ruhr-Universität Bochum, Germany.
REFERENCES

