Applying Base Value of the Fundamental Frequency via Multivariate Kernel-Density in Forensic Speaker Comparison

EMS Research Group – Fraunhofer IIS and TU Ilmenau, Germany
National Institute of Criminalistics – Federal Police, Brazil
Laboratory of Array Signal Processing (LASP) – University of Brasília (UnB), Brazil

Ronaldo R. da Silva, João Paulo C. L. da Costa, Ricardo K. Miranda, and Giovanni Del Galdo

Outline

- Motivation
- Application of a single LTF0 parameter
- Application of combined LTF0 parameters
- Proposed combination of the LTF0 parameters
- Conclusions
Outline

- Motivation
- Application of a single LTF0 parameter
- Application of combined LTF0 parameters
- Proposed combination of the LTF0 parameters
- Conclusions
Motivation (1)

- Master course in forensic computer science at University of Brasília (UnB)
 - Transference of financial resources from Brazilian Federal Police to UnB
 - 30 forensic experts concluding their master course until Dec. 2016
- Increase of digital medias with crimes: audios from whatsapp
- Forensic Speaker Comparison (FSC)
 - Comparison between the speech of an offender and the speech of a suspect: criminal conviction or proof of innocence of the suspect
- Several tools for voice recognition
 - Commercial solution based on MFCC GMM: Batvox
 - Fundamental frequency (F0)
Motivation (2)

- acoustic parameter used most in FSC due to its simplicity and robustness in poor quality audio recordings
- Base value of F0 (F_b): less affected by the speech style, the content, the recording channel and the speaker effort [1,2]

Forensic Speaker Comparison by the Federal Police

- Yearly: 200 requests, however only 60 performed procedures
- Methodology based on perceptual and acoustic analysis: subjectivity
 - European Network of Forensic Science Institutes (ENFSI)
 - Reproducibility and scientific basis
- 30 days of work for the voice analysis by a forensic expert

Motivation (3)

- Usage of the long term fundamental frequency (LTF0) in FSC by forensic experts [3]
 - 94% of forensic experts: arithmetic mean (μ) of F0
 - 72% of forensic experts: standard deviation (σ) of F0
 - 41% of forensic experts: median (\hat{Q}_2) of F0
 - 34% of forensic experts: mode ($\hat{\phi}$) of F0
 - 25% of forensic experts: base value (\hat{F}_b) of F0

- Proposal: combination of the base value of F0 with other statistical long-term measures of F0 using the Multivariate Kernel Density (MVKD)
 - Smallest error metrics by combining the base value (\hat{F}_b) and the median (\hat{Q}_2) of F0

Outline

- Motivation
- Application of a single LTF0 parameter
- Application of combined LTF0 parameters
- Proposed combination of the LTF0 parameters
- Conclusions
Single Long Term Fundamental Frequency Parameter (LTF0) (1)

- Fundamental frequency (F0)
 - Number of complete cycles of opening and closing the vocal cords per second
 - Time series and spectrogram using Praat: 35 values for F0
Single Long Term Fundamental Frequency Parameter (LTF0) (2)

- Base value of F0 (F_b)
 - personal vocal cords frequency [4]
 - carrier frequency: composed of the linguistic and extra-linguistic components
 - $F_b = \mu - 1.43\sigma$
 - 7.64 % percentile of the F0 distribution

Most used long term fundamental frequency (LTF0) in forensics

<table>
<thead>
<tr>
<th>LTF0</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic mean</td>
<td>LTF0₁</td>
<td>$\bar{\mu}$</td>
</tr>
<tr>
<td>Median</td>
<td>LTF0₂</td>
<td>\hat{Q}_2</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>LTF0₃</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>Base value of F0</td>
<td>LTF0₄</td>
<td>\hat{F}_b</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>LTF0₅</td>
<td>$\hat{\omega}$</td>
</tr>
<tr>
<td>Skewness</td>
<td>LTF0₆</td>
<td>$\hat{\eta}$</td>
</tr>
<tr>
<td>Mode</td>
<td>LTF0₇</td>
<td>$\hat{\phi}$</td>
</tr>
<tr>
<td>Modal Density</td>
<td>LTF0₈</td>
<td>$\hat{\gamma}$</td>
</tr>
</tbody>
</table>
Corpus:

- Forensic Brazilian Portuguese Corpus (CFPB)
 - 206 male and 50 female studio quality speaker recordings including semi-spontaneous speaking (interview) and reading sentences
 - Each recording with five minute duration of a net semi-spontaneous speech and two minute duration of reading
 - Validation with subset of 206 semi-spontaneous male recordings of the CFPB from all regions of Brazil
 - More than 90 % of the crimes with male recordings
Trace with \(R \) recordings

Suspect’s model with \(R \) recordings

Contour (voice activity) of \(R \) traces and \(R \) recordings

\(S \) sections each with \(t_s \) seconds: typically 5 s to 2 min

For each section (with voice activity) of each part, computation of eight long term fundamental frequency parameters (LTF0)
Single Long Term Fundamental Frequency Parameter (LTF0) (6)

- $R \times R$ comparisons for each section and for each LFT0

\[
\begin{pmatrix}
LR_{1,1} & LR_{1,2} & \cdots & LR_{1,R} \\
LR_{2,1} & LR_{2,2} & \cdots & LR_{2,R} \\
\vdots & \vdots & \ddots & \vdots \\
LR_{R,1} & LR_{R,2} & \cdots & LR_{R,R}
\end{pmatrix}
\]

- Likelihood Ratio (LR) matrix with all $R \times R$ comparisons
- Same speaker comparisons in the main diagonal ($r_1 = r_2$)
Likelihood Ratio (LR)

<table>
<thead>
<tr>
<th>$\log_{10}(LR)$</th>
<th>Verbal expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10}(LR) \geq 4$</td>
<td>Very strong evidence support to same source</td>
</tr>
<tr>
<td>$3 \leq \log_{10}(LR) < 4$</td>
<td>Strong evidence support to same source</td>
</tr>
<tr>
<td>$2 \leq \log_{10}(LR) < 3$</td>
<td>Moderately strong evidence support to same source</td>
</tr>
<tr>
<td>$1 \leq \log_{10}(LR) < 2$</td>
<td>Moderate evidence support to same source</td>
</tr>
<tr>
<td>$0 < \log_{10}(LR) < 1$</td>
<td>Limited evidence support to same source</td>
</tr>
<tr>
<td>$\log_{10}(LR) = 0$</td>
<td>No evidence support</td>
</tr>
<tr>
<td>$-1 < \log_{10}(LR) < 0$</td>
<td>Limited evidence support to different source</td>
</tr>
<tr>
<td>$-2 < \log_{10}(LR) \leq -1$</td>
<td>Moderate evidence support to different source</td>
</tr>
<tr>
<td>$-3 < \log_{10}(LR) \leq -2$</td>
<td>Moderately strong evidence support to different source</td>
</tr>
<tr>
<td>$-4 < \log_{10}(LR) \leq -3$</td>
<td>Strong evidence support to different source</td>
</tr>
<tr>
<td>$\log_{10}(LR) \leq -4$</td>
<td>Very strong evidence support to different source</td>
</tr>
</tbody>
</table>
Computation of the LR for comparisons of all traces against all suspect’s models

EER metrics

Equal Error Rate (EER)
- Adjust point that FAR = FRR
- False Acceptance Rate (FAR)
- False Rejection Rate (FRR)
- Decision threshold δ for the LR

\[
\text{FRR}(\mathcal{K}, \delta, s) = \frac{1}{2 \cdot R} \sum_{r_1=r_2=1}^{R} \left[\text{sign}(\delta - m_{\mathcal{K}, r_1, r_2, s}) + 0.5 \right]
\]

\[
\text{FAR}(\mathcal{K}, \delta, s) = \frac{1}{2 \cdot R(R-1)} \sum_{r_1=1}^{R} \sum_{r_2=1}^{R} \left[\text{sign}(m_{\mathcal{K}, r_1, r_2, s} - \delta) + 0.5 \right]
\]

\[
\text{EER}(\mathcal{K}, s) = \min |\text{FAR}(\mathcal{K}, \delta, s) - \text{FRR}(\mathcal{K}, \delta, s) |
\]
Single Long Term Fundamental Frequency Parameter (LTF0): reproduction of results using the CFPB forensic corpus (1)

<table>
<thead>
<tr>
<th>LTF0 (Symbol)</th>
<th>$t_s = 5s$</th>
<th>$t_s = 10s$</th>
<th>$t_s = 15s$</th>
<th>$t_s = 20s$</th>
<th>$t_s = 30s$</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTF0_4 (\hat{F}_b)</td>
<td>16.5</td>
<td>15.9</td>
<td>16.1</td>
<td>16.1</td>
<td>15.7</td>
<td>16.1</td>
</tr>
<tr>
<td>LTF0_1 ($\hat{\mu}$)</td>
<td>22.3</td>
<td>22.2</td>
<td>22.0</td>
<td>21.9</td>
<td>21.4</td>
<td>22.0</td>
</tr>
<tr>
<td>LTF0_7 ($\hat{\psi}$)</td>
<td>22.2</td>
<td>20.9</td>
<td>22.1</td>
<td>21.7</td>
<td>23.3</td>
<td>22.0</td>
</tr>
<tr>
<td>LTF0_2 (\hat{Q}_2)</td>
<td>22.3</td>
<td>21.8</td>
<td>22.7</td>
<td>21.7</td>
<td>21.5</td>
<td>22.0</td>
</tr>
<tr>
<td>LTF0_3 ($\hat{\sigma}$)</td>
<td>32.0</td>
<td>32.5</td>
<td>32.5</td>
<td>33.0</td>
<td>33.0</td>
<td>32.6</td>
</tr>
<tr>
<td>LTF0_8 ($\hat{\gamma}$)</td>
<td>33.4</td>
<td>33.0</td>
<td>32.5</td>
<td>33.1</td>
<td>34.0</td>
<td>33.2</td>
</tr>
<tr>
<td>LTF0_6 ($\hat{\eta}$)</td>
<td>45.2</td>
<td>42.1</td>
<td>40.3</td>
<td>43.7</td>
<td>41.9</td>
<td>42.6</td>
</tr>
<tr>
<td>LTF0_5 (\hat{w})</td>
<td>42.0</td>
<td>43.7</td>
<td>41.7</td>
<td>42.2</td>
<td>43.1</td>
<td>42.5</td>
</tr>
<tr>
<td>Mean</td>
<td>29.5</td>
<td>29.0</td>
<td>28.7</td>
<td>29.2</td>
<td>29.2</td>
<td>29.1</td>
</tr>
</tbody>
</table>
Single Long Term Fundamental Frequency Parameter (LTF0): reproduction of results using the CFPB forensic corpus (2)

- Detection Error Tradeoff (DET) curves of the isolated LTF0 parameters

- 94% of forensic experts: arithmetic mean ($\hat{\mu}$) of F_0
- 72% of forensic experts: standard deviation ($\hat{\sigma}$) of F_0
- 41% of forensic experts: median (\hat{Q}_2) of F_0
- 34% of forensic experts: mode ($\hat{\phi}$) of F_0
- 25% of forensic experts: base value (\hat{F}_b) of F_0

\hat{F}_b: low frequency ranges
Outline

- Motivation
- Application of a single LTF0 parameter
- Application of combined LTF0 parameters
- Proposed combination of the LTF0 parameters
- Conclusions
Likelihood Ratios (LR) of the combined LFT0 parameters
- Multivariate Kernel-Density (MVKD) function proposed in [5]

MVKD
- Computation of the LR in acoustic-phonetic parameters [6]
- Applied for variables for small amount of samples
- Exploitation of the statistical dependence between the variables

Combined Long Term Fundamental Frequency Parameters (LTF0) (1)

- MVKD of the Likelihood Ratios (LRs)

 Dependence on the chosen metrics, e.g., EER

\[2 \leq \log_{10}(LR) < 3 \quad | \quad \text{Moderately strong evidence support to same source} \]

Normalized histogram
Combined Long Term Fundamental Frequency Parameters (LTF0): reproduction of results using a forensic corpus (1)

State-of-the-art combinations of the LTF0 parameters

<table>
<thead>
<tr>
<th>LTF0 {κ}</th>
<th>EER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$t_s = 5s$</td>
</tr>
<tr>
<td>κ = {1, 3, 5, 6, 7, 8} = [7]</td>
<td>15.4</td>
</tr>
<tr>
<td>κ = {1, 3} = [8]</td>
<td>17.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LTF0</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic mean</td>
<td>LTF0(_1)</td>
<td>$\hat{\mu}$</td>
</tr>
<tr>
<td>Median</td>
<td>LTF0(_2)</td>
<td>\hat{Q}_2</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>LTF0(_3)</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>Base value of F0</td>
<td>LTF0(_4)</td>
<td>\hat{F}_b</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>LTF0(_5)</td>
<td>$\hat{\omega}$</td>
</tr>
<tr>
<td>Skewness</td>
<td>LTF0(_6)</td>
<td>$\hat{\eta}$</td>
</tr>
<tr>
<td>Mode</td>
<td>LTF0(_7)</td>
<td>$\hat{\phi}$</td>
</tr>
<tr>
<td>Modal Density</td>
<td>LTF0(_8)</td>
<td>$\hat{\gamma}$</td>
</tr>
</tbody>
</table>

• Not combined to other LTF0

Our goal: propose combinations of the LTF0 to reduce the EER and CLLR
Outline

- Motivation
- Application of a single LTF0 parameter
- Application of combined LTF0 parameters
- Proposed combination of the LTF0 parameters
- Conclusions
Proposed combined LTF0 (1)

- EER of the proposed combination of the LTF0 Parameters

<table>
<thead>
<tr>
<th>LTF0 {Κ}</th>
<th>$t_s = 5s$</th>
<th>$t_s = 10s$</th>
<th>$t_s = 15s$</th>
<th>$t_s = 20s$</th>
<th>$t_s = 30s$</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Κ = {2, 4}$</td>
<td>14.9</td>
<td>14.2</td>
<td>13.0</td>
<td>14.6</td>
<td>13.5</td>
<td>14.0</td>
</tr>
<tr>
<td>$Κ = {2, 4, 7}$</td>
<td>14.9</td>
<td>14.1</td>
<td>13.1</td>
<td>14.5</td>
<td>13.7</td>
<td>14.1</td>
</tr>
<tr>
<td>$Κ = {1, 2, 4}$</td>
<td>15.4</td>
<td>14.5</td>
<td>13.5</td>
<td>14.0</td>
<td>13.6</td>
<td>14.2</td>
</tr>
<tr>
<td>$Κ = {1, 2, 4, 7}$</td>
<td>14.6</td>
<td>15.0</td>
<td>13.2</td>
<td>14.9</td>
<td>14.5</td>
<td>14.4</td>
</tr>
<tr>
<td>$Κ = {1, 4}$</td>
<td>15.5</td>
<td>14.2</td>
<td>15.5</td>
<td>15.5</td>
<td>14.6</td>
<td>15.1</td>
</tr>
<tr>
<td>$Κ = {1, 4, 7}$</td>
<td>15.0</td>
<td>15.0</td>
<td>13.5</td>
<td>14.9</td>
<td>13.5</td>
<td>15.1</td>
</tr>
<tr>
<td>$Κ = {4, 7}$</td>
<td>15.0</td>
<td>14.6</td>
<td>14.6</td>
<td>16.1</td>
<td>15.5</td>
<td>15.1</td>
</tr>
<tr>
<td>$asmus = {1, 3, 5, 6, 7, 8} = [7]$</td>
<td>15.4</td>
<td>15.0</td>
<td>14.6</td>
<td>14.5</td>
<td>14.4</td>
<td>14.8</td>
</tr>
<tr>
<td>$Κ = {1, 3, 4, 5, 6, 7, 8} = [7]+\hat{F}_b$</td>
<td>14.0</td>
<td>14.2</td>
<td>15.1</td>
<td>14.5</td>
<td>15.1</td>
<td>14.6</td>
</tr>
<tr>
<td>$Κ = {1, 3} = [8]$</td>
<td>17.4</td>
<td>17.3</td>
<td>17.5</td>
<td>17.0</td>
<td>17.0</td>
<td>17.2</td>
</tr>
<tr>
<td>$Κ = {1, 2, 3, 4, 5, 6, 7, 8}$</td>
<td>15.1</td>
<td>15.0</td>
<td>15.4</td>
<td>15.0</td>
<td>15.1</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Proposed combined LTF0 (2)

- DET curves of the combined LTF0 parameters

![DET curves of the combined LTF0 parameters]

<table>
<thead>
<tr>
<th>LTF0</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic mean</td>
<td>LTF0₁</td>
<td>$\hat{\mu}$</td>
</tr>
<tr>
<td>Median</td>
<td>LTF0₂</td>
<td>\hat{Q}_2</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>LTF0₃</td>
<td>$\hat{\sigma}$</td>
</tr>
<tr>
<td>Base value of F0</td>
<td>LTF0₄</td>
<td>\hat{F}_b</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>LTF0₅</td>
<td>$\hat{\omega}$</td>
</tr>
<tr>
<td>Skewness</td>
<td>LTF0₆</td>
<td>$\hat{\eta}$</td>
</tr>
<tr>
<td>Mode</td>
<td>LTF0₇</td>
<td>$\hat{\phi}$</td>
</tr>
<tr>
<td>Modal Density</td>
<td>LTF0₈</td>
<td>$\hat{\gamma}$</td>
</tr>
</tbody>
</table>
Proposed combined LTF0 (3)

- Log-likelihood-ratio cost (C_{llr}) metrics [9]

$$C_{llr}(\mathcal{K}, s) = \frac{1}{2} \left(\frac{1}{R} \sum_{i=1}^{R} \log_2 \left[1 + \frac{1}{LR_{ss}} \right] + \frac{1}{(R(R-1))} \sum_{j=1}^{R(R-1)} \log_2 \left[1 + LR_{ds} \right] \right)$$

Proposed combined LTF0 (4)

- Cllr of the LTF0 combinations applied to the CFPB corpus

<table>
<thead>
<tr>
<th>LTF0 ${\mathcal{K}}$</th>
<th>$t_s = 5s$</th>
<th>$t_s = 10s$</th>
<th>$t_s = 15s$</th>
<th>$t_s = 20s$</th>
<th>$t_s = 30s$</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{K} = {2, 4}$</td>
<td>0.685</td>
<td>0.621</td>
<td>0.618</td>
<td>0.642</td>
<td>0.849</td>
<td>0.683</td>
</tr>
<tr>
<td>$\mathcal{K} = {2, 4, 7}$</td>
<td>0.950</td>
<td>0.952</td>
<td>0.743</td>
<td>0.952</td>
<td>1.113</td>
<td>0.940</td>
</tr>
<tr>
<td>$\mathcal{K} = {1, 2, 4}$</td>
<td>0.950</td>
<td>0.952</td>
<td>0.920</td>
<td>0.953</td>
<td>1.113</td>
<td>0.978</td>
</tr>
<tr>
<td>$\mathcal{K} = {1, 2, 4, 7}$</td>
<td>0.916</td>
<td>0.900</td>
<td>1.151</td>
<td>0.810</td>
<td>0.984</td>
<td>0.952</td>
</tr>
<tr>
<td>$\mathcal{K} = {1, 4}$</td>
<td>0.849</td>
<td>0.833</td>
<td>0.819</td>
<td>0.846</td>
<td>0.897</td>
<td>0.849</td>
</tr>
<tr>
<td>$\mathcal{K} = {1, 4, 7}$</td>
<td>0.810</td>
<td>0.766</td>
<td>0.863</td>
<td>0.736</td>
<td>0.804</td>
<td>0.796</td>
</tr>
<tr>
<td>$\mathcal{K} = {4, 7}$</td>
<td>0.663</td>
<td>0.790</td>
<td>1.167</td>
<td>0.871</td>
<td>1.189</td>
<td>0.936</td>
</tr>
<tr>
<td>$\mathcal{K} = {1, 3} = [8]$</td>
<td>0.773</td>
<td>0.722</td>
<td>0.875</td>
<td>0.822</td>
<td>0.995</td>
<td>0.798</td>
</tr>
</tbody>
</table>
Outline

- Motivation
- Application of a single LTF0 parameter
- Application of combined LTF0 parameters
- Proposed combination of the LTF0 parameters
- Conclusions
Conclusions

- Single LTF0 for Brazilian Portuguese recordings
 - Base value of F0 (F_b)
 - Lowest EER (16.1 %) considering the eight considered LTF0
 - Used by only 25 % of forensic experts

- Proposed combination of the LTF0 for Brazilian Portuguese recordings
 - F_b (LTF04) combined to the median \hat{Q}_2 (LTF02)
 - Lowest EER: 13 %
 - Lowest CLLR: 0.618
 - Scenario: section with 15 second length

- Next steps
 - Other percentiles for F_b: derivation considering Gaussian distribution
 - Evaluation for signal-to-noise ratio (SNR) variations and channel mismatch
 - Exploitation of the MVKD function using tensors
Thank you for your attention!

EMS Research Group – Fraunhofer IIS and TU Ilmenau
National Institute of Criminalistics – Brasília - Brasil
LASP – UnB Laboratory of Array Signal Processing

Ronaldo R. Da Silva, João Paulo C. L. da Costa, Ricardo K. Miranda, and Giovanni Del Galdo

Proposed combined LTF0 (1)

Step 1 - Divide the R recordings into 2 parts of the same length. First part used as a trace and the second part as a suspect’s model.

Step 2 - Extract the F0 contour of the R traces and of the R suspect’s models in sections of t_s seconds for $s = 1, \ldots, S$.

Step 3 - Compute LTF0$_{k=1,\ldots,8}$ given by $\hat{\mu}$, \hat{Q}_2, $\hat{\sigma}$, \hat{F}_b, $\hat{\psi}$, $\hat{\eta}$, $\hat{\psi}$ and $\hat{\gamma}$ for all contours extracted in the Step 2.

Step 4 - Computes LRs, via MVKD, comparing R traces against all R speaker models for all sections s and for \hat{F}_b combined with other LTF0$_{k=1,\ldots,8}$ $|\text{ LTF0}_k \neq \hat{F}_b$, resulting in matrices of $R \times R$ dimension.

Step 5 - Process the matrices obtained to compute the combined LTF0 EERs.
References

References

Proposed combined LTF0 (4)

Step 1 - Divide the R recordings into 2 parts of the same length. First part used as a trace and the second part as a suspect’s model

Step 2 - Extract the F0 contour of the R traces and of the R suspect’s models in sections of t_s seconds for $s = 1, \ldots, S$

Step 3 - Compute $\text{LTF}0_{k=1,\ldots,8}$ given by $\hat{\mu}, \hat{Q}_2, \hat{\sigma}, \hat{F}_b$, $\hat{\omega}, \hat{\eta}, \hat{\psi}$ and $\hat{\gamma}$ for all contours extracted in the Step 2

Step 4 - Computes LR, via MVKD, comparing R traces against all R speaker models for all sections s and for \hat{F}_b combined with other $\text{LTF}0_{k=1,\ldots,8}$ if $\text{LTF}0_{k} \neq \hat{F}_b$, resulting in matrices of $R \times R$ dimension

Step 5 - Process the matrices obtained to compute the combined LTF0 EERs

Step 6 - Compute Cllr of the LTF0 combinations